2.3 Multiplying fractions

Essential Question what does it mean to multiply fractions?

(1) EXAMPLE: Multiplying Fractions

A bottle of water is $\frac{4}{5}$ full. You drink $\frac{2}{3}$ of the water. How much do you drink?

THINK ABOUT THE QUESTION: To help you think about this question, rewrite the question.

Words: What is $\frac{2}{3}$ of $\frac{4}{5}$?
Numbers: $\quad \frac{2}{3} \times \frac{4}{5}=$?
Here is one way to get the answer.

- Draw a length of $\frac{4}{5}$.

Now, you need to think of a way to divide $\frac{4}{5}$ into three equal parts.

- Rewrite $\frac{4}{5}$ as a fraction whose numerator is divisible by 3 .

Because the length is divided into 3 equal sections, multiply the numerator and denominator by 3 .

In this form, you see that $\frac{12}{15}$ can be divided into three equal parts of $\frac{4}{15}$.

- Each part is $\frac{4}{15}$ of the water and you drank two of them. Written as multiplication, you have

$$
\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}
$$

\therefore So, you drank $\frac{8}{15}$ of the water.

2 EXAMPLE: Multiplying Fractions

A park has a playground that is $\frac{3}{4}$ of its width and $\frac{4}{5}$ of its length.
What fraction of the park is covered by the
 playground?

Fold a piece of paper horizontally into fourths and shade three of the fourths to represent $\frac{3}{4}$.

Fold the paper vertically into fifths and shade $\frac{4}{5}$ of the paper another color.

Count the total number of squares. This number is the denominator. The numerator is the number of squares shaded with both colors.
$\because \frac{3}{4} \times \frac{4}{5}=\frac{12}{20}=\frac{3}{5}$. So, $\frac{3}{5}$ of the park is covered by the playground.

Inductive Reasoning

Work with a partner. Complete the table using a model or paper folding.

Exercise	Verbal Expression	Answer
(1)	3. $\frac{2}{3} \times \frac{4}{5}$	$\frac{2}{3}$ of $\frac{4}{5}$
4. $\frac{3}{4} \times \frac{4}{5}$	$\frac{3}{4}$ of $\frac{4}{5}$	$\frac{8}{15}$
5. $\frac{2}{3} \times \frac{5}{6}$		$\frac{3}{5}$
6. $\frac{1}{6} \times \frac{1}{4}$		
7. $\frac{2}{5} \times \frac{1}{2}$		
8. $\frac{5}{8} \times \frac{4}{5}$		

What Is Your Answer?

9. IN YOUR OWN WORDS What does it mean to multiply fractions?
10. Write a general rule for multiplying fractions.

Practice

Use what you learned about multiplying fractions to complete Exercises 5-12 on page 60.

Key Idea

Multiplying Fractions

Words Multiply the numerators and multiply the denominators.
Numbers $\frac{3}{7} \times \frac{1}{2}=\frac{3 \times 1}{7 \times 2}=\frac{3}{14}$
Algebra $\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}$, where $b, d \neq 0$

exAmple (1) Multiplying Fractions

Find $\frac{1}{5} \times \frac{1}{3}$.

$$
\begin{array}{rlrl}
\frac{1}{5} \times \frac{1}{3} & =\frac{1 \times 1}{5 \times 3} \\
& =\frac{1}{15} & \text { Multiply the numerators. } \\
\text { Simplify. }
\end{array}
$$

EXAMPLE 2 Multiplying Fractions with Common Factors

Study Tip

When the numerator of one fraction is the same as the denominator of another fraction, you can use mental math to multiply. For example, $\frac{4}{5} \times \frac{5}{9}=\frac{4}{9}$ because you can divide out the common factor 5 .

Find $\frac{8}{9} \times \frac{3}{4} . \quad$ Estimate $1 \times \frac{1}{2}=\frac{1}{2}$

$=\frac{2}{{ }^{2} \times \mathscr{B}^{1}}{ }_{3}{ }^{1} \quad$ Divide out common factors. $=\frac{2}{3} \quad$ Simplify.
\because So, the product is $\frac{2}{3} . \quad$ Reasonable? $\frac{2}{3} \approx \frac{1}{2}$

On Your Own

Multiply. Write the answer in simplest form.

1. $\frac{1}{2} \times \frac{5}{6}$
2. $\frac{7}{8} \times \frac{1}{4}$
3. $\frac{3}{7} \times \frac{2}{3}$
4. $\frac{4}{9} \times \frac{3}{10}$

3 Standardized Test Practice

What is the value of $p \cdot \frac{7}{8}-q$ when $p=\frac{4}{5}$ and $q=\frac{1}{4}$?
(A) $\frac{1}{4}$
(B) $\frac{9}{20}$
(C) $\frac{1}{2}$
(D) 1
$p \cdot \frac{7}{8}-q=\frac{4}{5} \cdot \frac{7}{8}-\frac{1}{4} \quad$ Substitute $\frac{4}{5}$ for p and $\frac{1}{4}$ for q.
$=\frac{1}{5 \cdot 8_{2}^{\prime}}-\frac{1}{4} \quad$ Multiply. Divide out the common factor 4 . $=\frac{7}{10}-\frac{1}{4} \quad$ Simplify. $=\frac{14}{20}-\frac{5}{20}=\frac{9}{20} \quad$ Subtract.
\because The correct answer is (B).

EXAMPLE (4) Real-Life Application

You have $\frac{2}{3}$ of a bag of flour. You use $\frac{3}{4}$ of the flour to make empanada dough. How much of the entire bag do you use to make the dough?

Method 1: Use a model. Six of the 12 squares have both types of shading.
\therefore So, you use $\frac{6}{12}=\frac{1}{2}$ of the entire bag.
Method 2: To find $\frac{3}{4}$ of $\frac{2}{3}$, multiply.

$$
\begin{aligned}
\frac{3}{4} \times \frac{2}{3} & =\frac{1 \not Z \times \mathscr{Z}^{1}}{2^{1} \times \neq Z_{1}} & & \text { Multiply the numerators and the denominators. } \\
& =\frac{1}{2} & & \text { Divide out common factors. }
\end{aligned}
$$

\therefore So, you use $\frac{1}{2}$ of the entire bag.

On Your Own

Now You're Ready
Exercises 24-31
5. Evaluate $a+b \cdot \frac{1}{12}$ when $a=\frac{5}{6}$ and $b=\frac{2}{3}$.
6. WHAT IF? In Example 4, you use $\frac{1}{4}$ of the flour to make the dough. How much of the entire bag do you use to make the dough?

Vocabulary and Concept Check

1. WRITING Explain how to multiply two fractions.
2. OPEN-ENDED Give three different sets of two fractions each having the same product.
3. REASONING Name the missing denominator.

$$
\frac{3}{7} \times \frac{1}{\square}=\frac{3}{28}
$$

4. NUMBER SENSE Is $\frac{2}{3} \times \frac{5}{8}$ the same as $\frac{5}{8} \times \frac{2}{3}$? Explain.

Practice and Problem Solving

Multiply. Write the answer in simplest form.
(1) (2)
5. $\frac{1}{7} \times \frac{2}{3}$
6. $\frac{5}{8} \times \frac{1}{2}$
7. $\frac{1}{4} \times \frac{2}{5}$
8. $\frac{3}{7} \times \frac{1}{4}$
9. $\frac{2}{3} \times \frac{4}{5}$
10. $\frac{5}{7} \times \frac{7}{8}$
11. $\frac{3}{8} \times \frac{1}{9}$
12. $\frac{5}{6} \times \frac{2}{5}$
13. $\frac{5}{12} \times 10$
14. $6 \times \frac{7}{8}$
15. $\frac{3}{4} \times \frac{8}{15}$
16. $\frac{4}{9} \times \frac{4}{5}$
17. $\frac{3}{7} \times \frac{3}{7}$
18. $\frac{5}{6} \times \frac{2}{9}$
19. $\frac{13}{18} \times \frac{6}{7}$
20. $\frac{7}{9} \times \frac{21}{10}$
21. ERROR ANALYSIS Describe and correct the error in finding the product.

$$
\frac{2}{5} \times \frac{3}{10}=\frac{4}{10} \times \frac{3}{10}=\frac{4 \times 3}{10}=\frac{12}{10}=1 \frac{1}{5}
$$

22. AQUARIUM In an aquarium, $\frac{2}{5}$ of the fish are surgeonfish. Of these, $\frac{3}{4}$ are yellow tangs. What fraction of all fish in the aquarium are yellow tangs?
23. JUMP ROPE You exercise for $\frac{3}{4}$ of an hour. You jump rope for $\frac{1}{3}$ of that time. What fraction of the hour do you spend jumping rope?

ALGEBRA Evaluate the expression when $a=\frac{3}{4}, b=\frac{1}{6}$, and $c=\frac{2}{5}$.
(3)
24. $a \cdot \frac{5}{12}$
25. $\frac{4}{7} \cdot b$
26. $a \cdot b$
27. $c \cdot a$
28. $\frac{5}{9} a+\frac{1}{9}$
29. $\frac{14}{15}-\frac{7}{12} c$
30. $b c+\frac{2}{3}$
31. $a b+c$

Multiply. Write the answer in simplest form.
32. $\frac{1}{2} \times \frac{3}{5} \times \frac{4}{9}$
33. $\frac{3}{4} \times \frac{5}{8} \times \frac{6}{25}$
34. $\frac{4}{7} \times \frac{2}{3} \times \frac{9}{16}$
35. $\frac{5}{6} \times \frac{4}{15} \times \frac{7}{10}$
36. $\left(\frac{9}{10}\right)^{2}$
37. $\left(\frac{3}{5}\right)^{3}$
38. $\left(\frac{4}{5}\right)^{2} \times\left(\frac{3}{4}\right)^{2}$
39. $\left(\frac{5}{6}\right)^{2} \times\left(\frac{3}{7}\right)^{2}$

Without finding the product, copy and complete the statement using <, >, or =. Explain your reasoning.
40. $\frac{4}{7} \quad\left(\frac{9}{10} \times \frac{4}{7}\right)$
41. $\left(\frac{5}{8} \times \frac{22}{15}\right)-\frac{5}{8}$
42. $\frac{5}{6} \quad\left(\frac{5}{6} \times \frac{7}{7}\right)$
43. OPEN-ENDED Find a fraction that when multiplied by $\frac{1}{2}$ is less than $\frac{1}{4}$.
44. DISTANCES You are in a bike race. When you get to the first checkpoint, you are $\frac{2}{5}$ the distance to the second checkpoint. When you get to the second checkpoint, you are $\frac{1}{4}$ the distance to the finish. What is the distance from the start to the first checkpoint?

45. PETS You ask 150 people about their pets. The results show that $\frac{9}{25}$ of the people own a dog. Of the people that own a dog, $\frac{1}{6}$ of them also own a cat.
a. What fraction of the people own a dog and a cat?
b. SReasoninge How many people own a dog, but not a cat? Explain.

Fair Game Review what you learned in previous grades \& lessons

Write the mixed number as an improper fraction.
SKILLS REVIEW HANDBOOK
46. $9 \frac{1}{3}$
47. $4 \frac{3}{8}$
48. $7 \frac{3}{4}$
49. $3 \frac{5}{6}$
50. MULTIPLE CHOICE A science experiment calls for $\frac{3}{4}$ cup of baking powder. You have $\frac{1}{3}$ cup of baking powder. How much more baking powder do you need?

SKILLS REVIEW HANDBOOK

(A) $\frac{1}{4} \operatorname{cup}$
(B) $\frac{5}{12} \operatorname{cup}$
(C) $\frac{4}{7} \operatorname{cup}$
(D) $1 \frac{1}{12}$ cups

