9.5 Analyzing Graphs

Essential Question How can you analyze a function from its graph?

1 ACTIVITY: Analyzing Graphs

Work with a partner. Copy and complete the table for the given situation. Then make a graph of the data. Write an equation for the function. Describe the characteristics of the graph.

a. Find the area of a square with side length *s*.

Side, s	1	2	3	4
Area, A				

b. Find the amount earned for working *h* hours at \$3 per hour.

Hour, h	1	2	3	4
Amount, A				

Side, s

Hour, h

c. You start with \$20 in a savings account. Find the amount left in the account when you withdraw \$2 each day *d*.

Day, d	1	2	3	4
Amount, A				

d. You start with \$10 in a savings account. Find the amount in the account when you deposit \$2 each day *d*.

Day, d	1	2	3	4
Amount, A				

Day, d

Day, d

ACTIVITY: Conducting an Experiment

- Five books of the same thickness
- Toy car
- Stopwatch

Perform the Experiment:

- Place one book underneath one end of the board.
- Put the car at the top of the ramp. Measure the time (in seconds) it takes the car to roll down the ramp.
- Record your result in a table.
- Repeat the experiment with two, three, and four books.

Analyze the Results:

- Make a graph of your data.
- Does the graph have the characteristics of any of the graphs in Activity 1? Explain.

Use Your Results to Predict:

• Use your graph to predict how long it will take the car to roll down the ramp when five books are placed under the board.

Test Your Prediction:

Repeat the experiment with five books. How close was your prediction?

What Is Your Answer?

3. IN YOUR OWN WORDS How can you analyze a function from its graph? Give a real-life example of how a graph can help you make a decision.

Practice

Use what you learned about analyzing graphs to complete Exercises 3 and 4 on page 396.

A function whose graph is a straight line is a **linear function**.

EXAMPLE

1 Identifying Linear Functions

Key Vocabulary

linear function, p. 394 Does the graph represent a linear function? Explain.

b. y 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 x

- The graph is not a straight line. So, the graph does *not* represent a linear function.
- The graph is a straight line. So, the graph does represent a linear function.

EXAMPLE 2 Identifying a Linear Function

Input,	Output,
0	0
1	1
4	2
9	3

Does the input-output table represent a linear function? Explain.

The ordered pairs in the table are (0, 0), (1, 1), (4, 2), and (9, 3). Plot the ordered pairs and draw a graph through the points.

The graph is not a straight line. So, the function is *not* linear.

On Your Own

Now You're Ready

Exercises 5-14

Does the graph or table represent a linear function? Explain.

3.	Input, x	0	3	6	8
	Output, y	1	4	7	9

EXAMPLE

Identifying a Linear Function

Is the function relating the diagram number \boldsymbol{x} to the number of dots \boldsymbol{y} linear?

• Diagram 1

Diagram 2

Diagram 3

Diagram 4

Make an input-output table. Then graph the ordered pairs and draw the graph.

Diagram, x	Dots, y	(x, y)
1	1	(1, 1)
2	3	(2, 3)
3	6	(3, 6)
4	10	(4, 10)

The graph is not a straight line. So, the function is *not* linear.

EXAMPLE

Comparing Linear Functions

Your sister earns \$10 per hour. Your brother earns \$7 per hour.

The functions m = 10h and m = 7h show the relationship between the numbers of hours h they work and the money m they earn. Which graph is steeper? Explain.

The graph of m = 10h is steeper. The reason it is steeper is that your sister's hourly rate is greater than your brother's hourly rate.

On Your Own

5. Make an input-output table for the pattern. Is the function relating the diagram number *x* to the number of dots *y* linear? Explain.

6. The functions d = 65t and d = 55t show the relationship between the distances d (in miles) traveled and the times t (in hours) for two cars. Graph the functions. Which graph is steeper? Explain.

Vocabulary and Concept Check

- **1. VOCABULARY** Why are some functions called *linear functions*?
- 2. WRITING How can you decide whether or not an input-output table represents a linear function?

Practice and Problem Solving

Copy and complete the table. Then make a graph of the data. Write an equation for the function.

3. Find the diameter of a circle with radius r.

Radius, r	1	2	3	4
Diameter, d				

4. Find the cost of renting roller blades for *h* hours at \$6 per hour.

Hours, h	1	2	3	4
Cost, c				

Does the graph represent a linear function? Explain.

7. *y*

10. *y*

Does the input-output table represent a linear function? Explain.

Input, x	1	2	3	4
Output, y	1	3	5	7

12.

Input, x	0	2	4	6
Output, y	10	9	8	7

13.

Input, x	1	4	7	10
Output, y	5	2	2	5

14.

Input, x	3	4	5	6
Output, y	5	8	9	8

Graph each linear function. Which graph is steeper? Explain.

4 15.
$$y = 5x$$
 and $y = \frac{1}{5}x$

16.
$$y = \frac{4}{5}x$$
 and $y = \frac{3}{5}x$

17.
$$y = x$$
 and $y = 2x + 1$

Make an input-output table for the pattern. Is the function relating the figure number x to the area y linear? Explain.

Figure 1

Figure 3

1 square unit

19.

— 10 m -

6 m per second

Friend

5 m per second

- **20. FOOTRACE** In a 100-meter race, you give your friend a head start. Your speeds are shown.
 - **a.** Write a function that represents your distance *d* after *t* seconds.
 - **b.** Write a function that represents your friend's distance d after t seconds.
 - **c.** Graph your distance and your friend's distance in the same coordinate plane.
 - **d.** What does the intersection of the two graphs represent?
- **21. AIRPORT USE** The graph shows the numbers of flights that arrive at and depart from two regional airports. Which airport has more flights in a day? How many more? Explain.

- 22. Reasoning Use the graph.
 - **a.** Copy and complete the table. Then find the differences.

	X	0	1	2	3	4	5			
	у	1	1.5	2	2.5					
Differences: 0.5 0.5 ? ? ?										

Fair Game Review What you learned in previous grades & lessons

Tell which number is greater. (Section 4.3)

23. 40%,
$$\frac{11}{25}$$

25.
$$\frac{4}{5}$$
, 0.802

25.
$$\frac{4}{5}$$
, 0.802 **26.** $\frac{33}{50}$, $66\frac{2}{3}\%$

27. MULTIPLE CHOICE For which inequality is x = 7 a solution? (Section 8.1)

B
$$x + 4 \ge 12$$

©
$$21 \le 3x$$

D
$$4x - 5 > 23$$