Essential Question How can you recognize when two variables

are inversely proportional?

### **ACTIVITY:** Comparing the Height and the Base

#### Work with a partner.

**a.** There are nine ways to arrange 36 square blocks to form a rectangle. Here are two ways. Find the other seven ways.



**b.** Order the nine ways according to height. Record your results in a table.

| Height, <i>h</i> | Base, b | Area, A              |
|------------------|---------|----------------------|
|                  |         |                      |
|                  |         |                      |
|                  |         |                      |
| 4                | 9       | $A = 9 \cdot 4 = 36$ |
| 6                | 6       | $A = 6 \cdot 6 = 36$ |
|                  |         |                      |
|                  |         |                      |
|                  |         |                      |
|                  |         |                      |

c. Look at the first and second columns. Complete each sentence.

- When the height increases, the base •
- When the height decreases, the base •

In Activity 1, the relationship between the height and the base is an example of **inverse variation**. You can describe the relationship with an equation.

$$h = \frac{36}{b}$$
 h and b are inversely proportional.

#### **ACTIVITY:** Comparing Direct and Inverse Variation

Work with a partner. Discuss each description. Tell whether the two variables are examples of *direct variation* or *inverse variation*. Use a table to explain your reasoning. Write an equation that relates the variables.

- **a.** You bring 200 cookies to a party. Let *n* represent the number of people at the party and *c* represent the number of cookies each person receives.
- **b.** You work at a restaurant for 20 hours. Let *r* represent your hourly pay rate and *p* represent the total amount you earn.
- **c.** You are going on a 240-mile trip. Let *t* represent the number of hours driving and *s* represent the speed of the car.

### -What Is Your Answer?

- **3. IN YOUR OWN WORDS** How can you recognize when two variables are inversely proportional? Explain how a table can help you recognize inverse variation.
- **4. SCIENCE** The *wing beat frequency* of a bird is the number of times per second the bird flaps its wings.



Which of the following seems true? Explain your reasoning.

- Wing length and wing beat frequency are directly proportional.
- Wing length and wing beat frequency are inversely proportional.
- Wing length and wing beat frequency are unrelated.
- **5. SCIENCE** Think of an example in science where two variables are inversely proportional.



Use what you learned about inverse variation to complete Exercises 4–7 on page 146.

# 3.8 Lesson

Key Vocabulary () inverse variation, p. 144



### **Inverse Variation Words** Two quantities *x* and *y* show **inverse variation** when $y = \frac{k}{x}$ ,

where *k* is a number and  $k \neq 0$ .





#### EXAMPLE 1

# Study Tip 🖌

Other ways to say that *x* and *y* show inverse variation are "*y* varies inversely with *x*" and "*x* and *y* are inversely proportional." Tell whether x and y show *direct variation, inverse variation,* or *neither*. Explain your reasoning.

**Identifying Direct and Inverse Variation** 

**a.** 
$$5y = x$$

 $y = \frac{1}{5}x$  Solve for y.

: The equation can be written as y = kx. So, x and y show direct variation.

**b.** 
$$\frac{1}{3}y = \frac{1}{x}$$
  
 $y = \frac{3}{x}$  Solve for *y*.

: The equation can be written as  $y = \frac{k}{x}$ . So, x and y show inverse variation.

**c.** 
$$-x = y + 7$$

$$-x - 7 = y$$
 Solve for y.

The equation cannot be written as y = kx or  $y = \frac{k}{x}$ . So, x and y do *not* show direct or inverse variation.

### 👂 On Your Own

Now You're Ready Exercises 4–15 Tell whether x and y show *direct variation, inverse variation, or neither*. Explain your reasoning.

**1.** 
$$y - 1 = 2x$$
 **2.**  $\frac{1}{5}y = x$  **3.**  $2y = \frac{1}{x}$ 

EXAMPLE

2

#### **Standardized Test Practice**

In the graph, x and y show inverse variation. Which equation relates x and y?

|             | $y = -\frac{2}{x}$ | B | $y = \frac{2}{x}$ |
|-------------|--------------------|---|-------------------|
| <b>(C</b> ) | y = -2x            | D | y = 2x            |

The graph passes through (2, 1). Substitute to find *k*.

| $y = \frac{k}{x}$ | Write inverse variation equation. |
|-------------------|-----------------------------------|
| $1 = \frac{k}{2}$ | Substitute 2 for x and 1 for y.   |
| 2 = k             | Solve for <i>k</i> .              |

So, the equation  $y = \frac{2}{x}$  relates x and y. The correct answer is **B**.

### EXAMPLE 3 Real-Life Application



The graph shows the number of hours *y* it takes *x* workers to paint a room. (a) How does *y* change as *x* increases? (b) Do *x* and *y* show direct or inverse variation? (c) How many hours does it take five workers to paint the room?

- **a.** From the graph, you can see that *y* decreases as *x* increases. So, as the number of workers increases, the time to paint the room decreases.
- **b.** The equation is written as  $y = \frac{k}{x}$ . So, x and y show inverse variation.
- **c.** Use the equation to find *y* when x = 5.

$$y = \frac{8}{x}$$
 Write equation.  
=  $\frac{8}{5} = 1.6$  Substitute. Then simplify.

It takes 1.6 hours for five workers to paint the room.

#### On Your Own

- Now You're Ready Exercises 23 and 24
- **4.** Suppose *y* varies inversely with *x* and y = 3 when x = 1. Write an equation that relates *x* and *y*.
- **5. WHAT IF?** In Example 3, how many hours does it take three workers to paint the room?



# Vocabulary and Concept Check

- **1. WRITING** What does it mean for *x* and *y* to vary inversely?
- 2. NUMBER SENSE When x increases from 1 to 10, does  $\frac{1}{x}$  increase or decrease?
- **3. OPEN-ENDED** Describe a real-life situation that shows inverse variation.

# > Practice and Problem Solving

Tell whether x and y show *direct variation, inverse variation,* or *neither*. Explain your reasoning.

| <b>1 4.</b> $y = \frac{1}{x}$         | <b>5.</b> $xy = 8$            | <b>6.</b> $y - x = 0$                   | <b>7.</b> $\frac{1}{2}y = 2x$  |
|---------------------------------------|-------------------------------|-----------------------------------------|--------------------------------|
| <b>8.</b> $\frac{y}{3} = \frac{2}{x}$ | <b>9.</b> $y-2 = \frac{7}{x}$ | <b>10.</b> $x = y + 9$                  | <b>11.</b> $x = 4y$            |
| <b>12.</b> $y = \frac{5}{2x}$         | <b>13.</b> $2y = \frac{6}{x}$ | <b>14.</b> $\frac{5x}{3} = \frac{y}{4}$ | <b>15.</b> $x = \frac{7+y}{2}$ |

**16. ERROR ANALYSIS** Describe and correct the error in telling whether *x* and *y* show inverse variation.

$$\frac{y}{2} = \frac{\beta}{x}$$
  
The equation does not show  
inverse variation because it  
is not of the form  $y = \frac{k}{x}$ .

#### Graph the data. Tell whether x and y show *direct variation* or *inverse variation*.



#### Tell whether x and y show *direct variation* or *inverse variation*. Explain.

- **21. STADIUM** The time *y* it takes to empty a stadium and the number *x* of open exits are related by the equation  $y = \frac{0.8}{x}$ .
- **22. TRAVEL** The number *y* of miles driven and the number *x* of gallons of gas used are related by the equation y = 28.5x.

#### The variables *x* and *y* vary inversely. Write an equation relating *x* and *y*.

24.



**25. BICYCLING** The table shows the times it takes to bicycle 12 miles at various speeds.



| Speed (mi/h) | 12 | 6 | 3 | 2 |
|--------------|----|---|---|---|
| Time (h)     | 1  | 2 | 4 | 6 |

- **a.** Does the time *t* vary inversely with the speed *s*? If so, write an equation relating *t* and *s*.
- **b.** What time corresponds to a speed of 4 miles per hour?



- **26. MARTIAL ARTS** It takes 3.6 pounds of force to break a 5-foot board.
  - **a.** You remember from science that force and board length vary directly or inversely, but you've forgotten which. How can you use reason to remember?
  - **b.** How much force does it take to break the board shown?
- **27. SALARY** A salesperson has a fixed weekly salary. The person works twice as many hours this week as last week. What happens to the person's hourly rate?
- **28.** Reasoning The price per person to rent a limousine varies inversely with the number of passengers. It costs \$90 each for five people. How many people are renting the limousine when the cost per person is \$56.25?

### Fair Game Review What you learned in previous grades & lessons

| Find the percent of the number. (Skills Review Handbook)                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| of 220 <b>30.</b>                                                                                                                                                                                                                                    | 32% of 275                                                                                                                          | <b>31.</b> 84% of 75                                                                                                                                                                                                                                                                                                                             | <b>32.</b> 21% of 300                                                                                                                                                                                                                                                                                                                                            |  |
| Tell whether the ratios form a proportion. (Section 3.3)                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |  |
| 34.                                                                                                                                                                                                                                                  | $\frac{21}{9}, \frac{18}{8}$                                                                                                        | <b>35.</b> $\frac{42}{91}, \frac{24}{52}$                                                                                                                                                                                                                                                                                                        | <b>36.</b> $\frac{24}{38}, \frac{36}{57}$                                                                                                                                                                                                                                                                                                                        |  |
| <ul> <li>37. MULTIPLE CHOICE A gumball machine contains 1000 gumballs. The ratio of red gumballs to the total number of gumballs is 1:4. How many red gumballs are in the machine? (Section 3.5)</li> <li>(A) 150 (B) 250 (C) 400 (D) 750</li> </ul> |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                      | of 22030.are the ratios form3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 | <b>30.</b> $32\%$ of $275$<br><b>31.</b> $32\%$ of $275$<br><b>32.</b> $\frac{21}{9}, \frac{18}{8}$<br><b>33.</b> $\frac{21}{9}, \frac{18}{8}$<br><b>34.</b> $\frac{21}{9}, \frac{18}{8}$<br><b>35. CIPLE CHOICE</b> A gumball machine of gumballs to the total number of gumballs to the total number of gumballs to the machine? (Section 3.5) | of 220 <b>30.</b> $32\%$ of 275 <b>31.</b> $84\%$ of 75 <b>aer the ratios form a proportion.</b> (Section 3.3) $\frac{3}{9}$ <b>34.</b> $\frac{21}{9}, \frac{18}{8}$ <b>35.</b> $\frac{42}{91}, \frac{24}{52}$ <b>TIPLE CHOICE</b> A gumball machine contains 1000 gum<br>umballs to the total number of gumballs is $1:4$ . How<br>in the machine?(Section 3.5) |  |